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Using Airborne Hyperspectral and Satellite Multispectral Data to Quantify
Within-Field Spatial Variability

S. Y. Hong* K. A. Sudduth** N. R. Kitchen** H. L. Palm** and W. J. Wiebold**
USDA-ARS, Cropping Systems and Water Quality Research

ABSTRACT

The relationship berween hyperspectral and multispectral remotely sensed images and ground-based soil and crop
information’ was investigated for two central Missouri experimental fields in a com (Zea mays L.)-sovbean (Glycine
max L.} rotation. Multiple airborne hvperspectral and IKONOS images were obtained during the 1999 and 2000
growing seasons. Hyperspectral images (HSI) covered 120 bands from 47! to 828 nm with a spatial resolution of
m. Multispectral IKONOS images incluged four bands ranging from blue, green, red, and near-infrared with a spatial
resolution of 4 m. Geometric distortion of the pushbroom-type sensor caused by aircraft attitude change during image
acquisition was corrected with a rubber sheeting transformation. Within-field data collection included crop vield, soil
electnical conductivity (EC,), and soil chemical properties. Simple correlation, muitiple regression, and principal
component analysis were used 1o identify those hyperspectral data most highly related with field measured soil and
crop properties. Blue wavelengths were most highly correlated with EC, measurements. For com, the early reproductive
stage provided the best relationships between final yield data and specural signawres in both years. For soybeans, yield
data were highly correlated with wavelengths in the near infrared region from August images in both 1999 and 2000.
Maps estimating soil EC, and crop vield from hyperspectral and mulnspectral images were denved.

Keywords : Remole sensing, Precision agriculture, Hyperspectral images, Multispeciral images. '

way 1o detect spatial differences in crop and soil

1. INTRODUCTION

conditions within a field. The recent convergence

Precision agnculture, or site-specific crop manage-
ment (SSCM), is an information-based management-
intensjve approach to farming. [nstead of managing a
field as a whole, the philosophy of precision
agriculture is to manage individual areas within a
field. Understanding the funcuonal relationship of
crop vield to other spatial factors, therefore, is a
basic need for successful SSCM (Sudduth et al,
1996). Identification and quantification of within-
field soil and crop condition {(such as crop density
differences, differences In soil properties, stress or
damage caused by diseases, weeds, and pesticides)
is needed to understand their effect on yield. If
crop stess indicators can be spatially located, then
an observer can visit that area in the field 1o
diagnose the cause.

Image-based remote sensing (RS) is an efficient

of technological advances in geographic information
systems (GIS), global positioning systems (GPS),
and automatic control of farm machinery through
variable rate technology (VRT) within the precision
crop management system have provided an ideal
framework for utilizing RS for farm management
(Moran, 2000). Remotely sensed data are also
useful in helping to define management units.
Remote sensing offers the potential for iden-tifying
fine scale spatial patterns in soil properties across a
field, and optimizing the soil sampling strategy to
quantify those patterns (Mulla et al., 2000).
Imaging spectromewy which is known as hyper-
spectral sensing is defined as the simultaneous
acquisition of images in meany relatively narrow,
contiguous and/or non-contiguous spectral  bands

throughout the ultraviolet, visible and infrared
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portions of the spectrum (Jensen, 2000). The value
of an imaging spectrometer lies in its ability to
provide a high-resolution reflectance spectrum  for
each picture element in the image. The reflectance
specmum in the region from 0.4~2.5 um may be
used to identify a large range of surface cover
materials that cannot be identified with broadband,
low-spectral-resolution Imaging systems such as the
Landsat MSS, TM, or SPOT (Goerz et al., 1985).
Airborne pushbroom scanning provides ap effec-
tive method for hyperspectral imaging (HSJ]) with a
low cost digital CCD camera (Mao, 2000). How-

ever, the data obtained with an aerial pushbroom

HST system suffers from geomeiric distortions.
Some of the distortions are caused by aircraft
attitude change during image scanning. When the

aircraft attitude changes, the scanner is presented
with an off-nadir scene, causing distortion. This
problem is especially severe in the in-track direc-
tion due to roll of the aircraft. These distortions
must be corrected before the image data can be
geo-referenced and used for field pamtern identifi-
cation {Yao et al, 2001).

The objective of this smdy was to explore the
relationships  berween  the  spectral  reflectance
signatures and biophysical properties of crops and
soils using HSI, and to evaluate the usefuiness of

HSI for quantifying within-field spatial variability.

2. GROUND DATA COLLECTION AND PRO-
CESSING '

Data were collected on two fields (Field 1, 35

Juantify Within-Tield Spatial Variabilinv

ha and Guillo, 13 ha) located within 3 km of each
The soils
found at these sites are characierized as clavpan
of the (fine,

smectitic, Mexico-

other near Centralia, in central Missouri.
solls Mexico-Pumam  association
mesic aeric  Vertic  Aqualfs).

Pumnam soils formed in moderatelyfine textured
loess over a fine textred pedisediment. Surface
textures range from a silt loam to a silty clay
loam. The subsoil claypan horizon(s) are silty clay
loam, silty clay or clay, and commonly contain as
much as 50 to 60% monmnorillonitic clay. Within
each study field, topsoii depth above the claypan
ranged from less than 10 cm to greater than 100
cmm.  Because of the high-clay subsurface horizons,
topsoll depth above the claypan is often correlated
10 spatjal vanations in crop productivity (Kitchen et
al, 1999).

Ground measurements used in  this
yield, soil

chemical

analysts

included combine grain electrical

conducuvity (EC,), and soil properties.
Two com and two were
obuained (Table 1). Gleaner R42 or R62 combines
equipped with Agleader Yield Monitor 2000 yieid

sensing systems were used to obuin yield data.

sovbean crop-years

Data collection and processing techniques were as
described by (1996). To
outliers, data pownts four srandard deviations above

Birre'l el al Temove
or below the mean vield were removed, as were
datz collected at harvesting speeds of less than
0.75m/s. Yield data were analyzed using geosta-
tistics, and mapped by block kriging (I m cell
size) with appropriate semivariogram models for
signatures and vegetation

comparison 10 speciral

indicies.

Table 1. Cropping information and image acquisition dates in 1999 and 2000

Image acquisition dates

. |

| Year Crop Seeding Harvest | (S : compared with Soit properties, Y : compared with
‘ date date | ..
; i Yield data)
‘ 1999 |Com  |May 24  [Nov. 5, 6 | July 7(Y), Angust 27(Y)

Field 1 | i CApril 12 i 2 ly 25 August 29(Y).
2000 |Soybean [May 20, 21 Nov. 1,11 | 2P} 12(5), -Aprl 26(5), July 25(Y), August 29(Y),
| - - | | September 11(Y)
1999 |Soybean [May 10 10ct. 6 | July 70Y), Avgust 27(Y)

Guvillo ! -. -
2000 |Com April 11 Sep. 18,19 | June 25(Y), July 25(Y), September 11(Y)
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Fields were grid soil-sampled 10 a 15 c¢m depth
and analyzed for P (Bray 1 exmactable), K, Ca,
Mg (ammonium acetate extractable). CEC (sum of
bases), organic matter (wet oxidation), salt pH and
neutralizable acidity (NA, Woodruff buffer method)
using standard University of Missouri procedures
(Brown and Rodriguez, 1983). Grid spacing was 33

m for Field 1 and 25 m for Gvillo. Soil sampling

point coordinates were later used to extwact
cowmcident spectral signatures obtained from the
HSIL

Soil EC, was mecasured for each field in the fall
of 1999 using two commercjal sensor svstems --
the Geonics EM38 and the Veris 3100. The EM38
operates the of
induction and, as operated in the verical dipole

mode, provides an effective measurement depth of

on principle electromagnetic

approximately 1.5 m. The EM38 was used with a
GPS-enabled mobile system described by Sudduth
et al. (2001)
measurement

every )} s on

10 m apart. The

to collect data

transects spaced
Veris 3100 is a complete commercial system that
measures EC, that

penetrate the ground surface. This device provides

through coulter elecirodes
effective measurement depths of approximately 0.3
and 1.0 m. Data was collected everyv 1 s on a 10
m ansect spacing. At the operating speeds used,

this time interval corresponded to 2 4 to 6 m

spacing berween sample points. In  previous
research, we have found these ™o sensors 1o
provide similar, but not identical mapped EC,

informauon on claypan-soil fields (Sudduth et al.,
1699). EM38 and Veris deep readings have been
depth
1999;

reliable estimators of claypan-soil topsoil
(Doolittle, et al., 1994;

Sudduth et al, 1999; Sudduth et al. 2001).

Kitchen et al.,

3. HYPERSPECTRAL AND MULTISPECTRAL
IMAGE ACQUISITION, RECTIFICATION,
AND PROCESSING

Alrbome images were taken 2 times in 1999 and
7 tmes in 2000 during the cropping (Table ).
Multispeciral images of IKONOS were taken on

|

|

20024 2 ¢

1%

29, 2000.
Soybeans were seeded on May 20 and 21, 2000
for Field 1, which had bare soil at that time due

June August 4, and Sepiember 6,

to previous tiliage. Field 1 images of HSI taken on
April 12 and Apnl 26, 2000 after spring tillage
were compared with grid-sarpled soil properties
and soil EC, Since the Gvillo fie)d was cropped
under no-tiilage and was covered with crop residue
and weeds before seeding, no comparison of soil
properues and HSI was attempted on that field.
Yield dara
images taken on July 7 and August 27, 1999 and
July 25, August 29, September 11, 2000 for Field
1, and July 7 and August 27, 1999 and June 235,
July 25, and September 11, 2000 for Gvillo, and
also with multispectral IKONOS images taken on
June 29, August 4, and September 6, 2000 both
for Field 1 and Gvillo.

The aerial HSI system used in this study was a

were  compared  with  hyperspecrral

pushbroom prism-grating scanner (RDACSH3;Real
Time Digital Airborre Camera System H3) operated
by Spectral Visions Midwest (Mao, 2000). Images
were generally acquired between 10:30 am and
noon. lmages included 120 bands from 471 -nm to
828 nm (3 nm interval) with a spatial resohition of
1 m and 0.0015 um Full Width at Half Maximum
(FWHM). Pushbroom scanning is a widely used
method for airbome HSI, in which an airborne
imaging sensor acquires one image line at a tme
while the aircraft provides a mobile platform 1o
carry the sensor across (he target area.

was

Geomertric  distortion

images, probably due to aircraft amitude change

observed in many

during image acquisition. In general, such geometric
should be the
We applied a rubber
model, which uses piecewise polynomials for image
rather than the
We have
field boundary vector data and resolution merged
IKONOS image with a spatial resoiution of 1 m
taken on August 4, 2000 for both fields. IKONOS

reaistered and matched with  field

distortion corrected  at system

acquisition leve). sheeting

rectification linear polynonmial

transformation. very accurate surveved

image was

boundary and used as a reference image for

georeferencing airborne imagery. Rubber sheeting
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recommended for rectification of
area outside field of interest because of geometric

uncertainty, and should be used only when the

models are not

geometric distortion is severe, ground control points
are abundant and no other geometric model is
applicable (ERDAS Field Guide, 1997).
(2000) reported that a more precise image was

Foghani

obtained by using a rubber sheeting procedure,
compared to polynomial adjustment or an ortho-
photography algorithm. Al HSI data were resampled
with a spatial resolution of 4 m due to the file size
[KONOS, and
data set

preparation. Landsat-like bands set was created by

and the purpose to compare with
converted to ascii format for statistical
integrating spectral reflectance values of HSI to the
real TM bands, which are the same band range as
TKONOS and used for data analysis.

Atmospheric and bidirectional reflectance distribu-
tion factor (BRDF) effects should be considered to
compensate for solar angie, elevation effects and
seasonal change. In this studv, chemically-treated
reference tarps with known reflectances are laid out
for aerial image nommalization during flight for two
images out of 18 images and then percent
reflectance  were calculated using the regression
model of pixel of HIS for
reflectance of tarps. Two images with tarps taken
12 and 26, 2000 were
radiometrically and used in comparison with ground
EC. and

properties. For this study, hyperspectral

values known

on April calibrated

sensed soil properties such as soil
chemical
images were generally acquired under clear skies
and at a constant low altitude of approximately
1200 meters to get the specified 1 m pixel size
imagery. Therefore compensation for aimospheric
effects was not applied and digital numbers (DNs)
of each image were used for statistical analysis in
this study. The BRDF effect may influence pixel

values more than atmospheric effect does ip aerial

imaging. The impact of BRDF distribution
functions is still not well understood despite the
fact that we know if exists in much of the

commonly used remotely sensed (Jensen, 2000).
Vegetation indices are defined as dimensionless,

radiomefric measures that function as indicators of

relative abundance and activity of green vegetation.
These indices could be related as functions of leat
(LAI), green
chlorophyll content, green biomass, and absorbed

area  index percentage cover,

photosynthetically active radiation (APAR) (Jensen,

2000; Hong, 1999; Thenkabail et al., 2000;
Wiegand et al., 1991). A vegetation index should
maximize sensitivity to plant biophysical para-

meters, normalize or model external effects such as

sun angle, viewing angle, and the atmosphere,
normalize intemal effects such as canopy back-
ground variations, and be coupled to some specific
measurable biophysical parameter such as biomass,
LA, or APAR (Jensen, 2000). A sensitivity analy-
sis assessmng wavelength combinations on spectral
indicies for explaining yield variability was per-
formed. 10 bands in ecach of the near
(0.76 um~0.79 um), red (0.64 um~0.67 um), green
(0.52 um~0.55 um), and blue (0.47 um~0.50 um)

wavelengths, whose range were stable for correl-

infrared

ation coefficient continuity, were selected for all
possible bi-band combinations for the following two
indices calculation. All possible bi-band ratio vege-
tation indices (RVI=NIR/(RED or GREEN or BLUE)
and normalized difference vegetation index (NDVI=
(NIR-RED or GREEN or BLUE)/(NIR+RED or
GREEN or BLUE) of HSI, 300 combinations of
calculating  the indicies,

wavelengths  for were

computed and then correlated with yield data.

4. DATA ANALYSIS

Principal component analysis (PCA) was com-
pleted on each image and used as a data set for
further statistical analysis. PCA is a procedure for
wansforming a set of correlated variables into a
new set of uncorrelated variables, the principal
components (PCs). This transformation is a rotation
of the original axes to new orientations that are
orthogonal to each other, thus there is no corre-
Another

the majority of the

lation among the transformed variables.
property of PCA is that
information contained in a large set of highly
correlated variables (wavelengths, in this case) can

be represented with a much smaller number of
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PCs. The first

calculated and used for

five (PCs) of each image were
data analvsis. Standard
correlation and stepwise multiple linear regression
(SMLR) analyses were carried out o determine the
relationship between image signatures and ground-
.the GPS

coordinates for soil EC,, soil chemical properties,

collected soil and crop vyield. Using
and yield, pixel values of coincident points on the
imagery were extracted, and PCs calculated. Using
SMLR, soil ECa and chemical property data were
regressed image data consisting of 120
bands, 4 Landsat-like bands, 4 TKONOS bands, and
5 PCs of the Field ) images taken in April 12 and
26, 2000. vield data
against hyperspectral image signatures (120 bands,
4 Landsat-like bands, 4 TKONOS bands, and 5 PCs
of the Field | images taken in April |2 and 26,
2000. Similarly, vield dara were regressed against
hyperspectral image signatures (120 bands, 4
Landsat-like bands, 4 IKONOS bands. and 5 PCs)

from several Field | and Gvillo images (Table 1).

agalnst

Similarly, were  regressed

The flow chan of procedures are shown in Fig. L.

5. RESULTS AND DISCUSSION

f procedures in this study.

A. Soil Properties and Hyperspectral Sig-

natures ’

The spectral reflectance of soil is influenced by
moisture content, organic matier, particle size, iron
oxide, mineral composition, soluble salts, parent
materials, and other factors (Baumgardner et al.,
1985). It has also been noted that the environ-
mental conditions under which soils have been
formed affect soil reflectance. To investigate the
specific relationships present in this data, correla-
tion analysis was completed and correlation coeffi-
2

cients (r) were plotted against wavelength (Fig.
and 4) to investigale the effective wavelength range
as related to soil EC, and chemical properties -
pH, NA, organic mauer, P, Ca, Mg, K, and CEC.
HSI taken on April 12 and 26, 2000 used for the
using  known-reflectance

analysis were calibrated

tarps.

Soil EC, had a strong negative correlation with
all 120 bands and Landsat-like bands (LBs) (Fig.
2). The the

correlation with EC,, with the correlation decreas-

blue wavelengths showed highest

ing rapidly as the wavelength increased to around

0.56 um. In the green and red wavelengths,

correlation coefficients for EC, were essentially
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Fig. 2. Correlations of 120 wavelengths, Landsat-like bands(LB), and NLB31((LB3-LB1)/(LB3+LB1))
to EC readings obtained by EM38 and Veris Systems.

a) Veris deep semnsing data

constant. The Veris 3100 deep (0-1.0 m) EC,
reading was most highly correlated with a spectral
index, NUB31 (LB3-LB1)(LB3+LBI)). Around 0.74
~0.75 um a region of noisy dawa was found in
each correlogram (Fig. 2). This is the location of
an O, and H,O absorption band, where radiant
energy absorbed by

stituents (Jensen, 2000).

is these atmospheric con-

SMLR analysis was applied to the soil ECa and
hyperspectral bands for the April 2000 images from

Field 1. The most predictive models with
coefficients of determination (R°) ranging from
0.297 to 0.388, are shown in Table 2. The model

using EC, data measured by Veris 3100 deep

b) Landsat-like band 1 ¢) First principal component d) NLB31=(LB3-LB1)/(LB3+LB1)
Fig. 3. Soil EC map and images derived from HS data of April 2000.

sensing was the best significant model for Field 1
with R=0.388. to the full model, a
conservative SMLR model, with R’ 95% of the
full model was determined (Table 2). The intention
of this the
overfitting the data as compared to the full model.

In addition

model was to reduce chance of

A similar approach worked well in a previous
spectral data analysis (Sudduth and Hummel, 1991).
For all models (Table 2), the number of wave-
lengths used was reduced by this approach over
30% full that little
information was contained in those additional data.

over the model, suggesting
Five PCs derived from the 120 hyperspectral bands

were correlated with soil EC, data (Table 3). All
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five PCs were significantly related to EC, readings.

A1 ArE 20009 2 W

salinity, organic compounds, and metals (Geonics

Table 2. Stepwise multiple regression model for estimating soil electric conductivity from image

data
Full stepwise , .
Dependent| Image Model ‘ | Conservative Mode!
Variable | Date \ N. of 4, |N.of
R s | R as | 2s (um) |

Apr.12| 0310%** | 74 [0.295*** ]2

0471, 0474, 0477, 0498, 3501, 0.669, 0.672,
[0.687, 0.702, 0.738, 0.741, 0.744

EC-EM38

JHokk |
Apr.26 0.322 66 [0.306***| 10

0.471, 0480, 0.498, 0.501, 0.669, 0.672, 0,732,
0.741, 0.744, 0.747

Apr.12| 0.340*** | 80 [0.323*** 30

0471, 0474, 0477, 0480, 0.483, 0.486, 0.489,
0.504, 0.531, 0.540, 0.543, 0.546, 0.549, 0.552,
0.555, 0.558, 0.56), 0.567, 0.570, 0.573, 0.579,
0.588, 0.654, 0.681, 0.705, 0.708. 0.723, 0.738,
0.741, 0.744

EC-VRsh |

|Apr.26 | 0.297*** | 8] |0.282%**| 36

0471, 0474, 0.477, 0.480, 0.483, 0486, 0.489,
0492, 0.495. 0525, 0531, 0.534, 0.540, 0.543,
0.546, 0.552, 0555, 0.558, 0.56}, 0.570, 0.573,
0.579, 0.588, 0.591, 0.654, 0.669, 0.678, 0.684,
0699, 0.711. 0.741, 0.744, 0.792, 0.795, 0.807,
0.813

Apr.12| 0.388*** | 7] [0.369*** 18

0471, 0.474, 0.477, 0480, 0.483, 0.489, 0.495,
0.498, 0561, 0.67, 0.570, 0.573, 0.576, 0.579,
0588, 0.672, 0.741, 0.744

EC- ’
VRdeep F

iApr.26 0.330*** | 75 |0.313%**

|

|

| |
|

| )

>
w

0.471, 0.474, 0477, 0.480, 0.485, 0.489, 0.495,
0.498, 0.552, 0.558, 0.561, 0.567. 0.570, 0.579,
0,588, 0.591, 0.603, 0.642, 0.669, 0.741, 0.744,
0.747, 0.792, 0.807, 0.828

* Minimum model which yielded R’ = 95% of full model R’

PC1 of the HS image was highly, negatvely

correlated with soil EC, and explained over 80%
of the variance in the HS data. Multiple regression
of the PC data (Table 3) was much less predictive
of soil EC, than SMLR of the original data (Table
2). Within-field EC, variability map was made
using the LBI1, 1 principal component, and a
spectral index (NLB31) of the imagery taken on
April 12, 2000 (Fig. 3 (b), (c), (d)). Soil EC. can
be affected by a number of different soil properties
including clay content, soil water content (Kacha-
noski et al.. 1990), varying depths of conductive
soil layers (Doolittle et al,, 1994), temperature,

Limited, 1992). On these clavpan soil fields, soil
EC, is usually highest on eroded side-slopes. Here
the claypan is often exposed and therefore the
surface will have much higher clay content than at
other landscape positions. We have also found soil
organic matter higher on eroded side-slopes than in
other landscape positions (data not included). We
bypothesis that variation in soil clay content
{primary factor) and organic matter (secondary
factor) are the major soil conditions that provide
this relationship between spectral information and
soil EC,

Soil chemical properties were related to blue,

— 88 —
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Table 3. Relationships between soil EC readings and image-derived principal components

PCI PC?
Date Apr.12 Apr.26 Apr.(2 Apr.26
VAR” 81.36 82.68 3.90 2.16
R? of MR tor all PCs
Variable Apr.i2 Apr.26 Lo
EC-EM38 0.175%** 0.234*** —~(.384%** ) -0.400%** 0.1 15%*x 0.108***
EC-VRsh 0.082*** 0.090*** —-0.283%** -0.280*** -0.0344** 0.016*
EC-VRdeep 0.125%** 0.133%%* -0.337*** -0.304**% -0.045%«=* 0.025
PC3 PC4 PCs
Apr.12 Apr.26 Apr.12 Apr.26 o Apr. 12 Apr.26
0.92 0.94 0.56 0.66 0.38 0.40
e AR [ e e e e eee et et e e
EC-EM38 0.113%x* —0.144%* 0.045%** —0.235%*# 0.040%** 0.014
'EC-VRsh 0.020%** -0.060*** 0.017* =0.096*** -0.009 0.007
EC-VRdeep 0.091*** -0.110%** 0.047%** -0.175%%* 0.020** 0.017*

*= 0.05>p>0.01. ** =0.01>p>0.001, *** =p<0.001, a % vanance explained by each PC.
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Fig. 4. Correlations of 120 wavelengths, Landsat-like bands(LB), and NUB31((LB3-LBI)/(L.B3+LBl))
to soil chemical properties.
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properties were determined by soil color and thus,
the factors influencing soil color also influenced
soil chemical property variability. Except pH. all
soil fertility data were negatively correlated to
hyperspectral data. Correlations of Mg and CEC 10
hyperspectral bands and LBs were the highest over
the range of wavelengths. For all soil properties,
the highest correlations were generally found from
047 um to 0.52 um, in the blue bands of the
visible region, and with NLB31. SMLR analysis
was applied (o the soil chemical properties and
hyperspectral images obtained on April of 2000 for
Field 1. The best significant models for soi
chemical properties, with R’ values ranging from
0.270 to 0.416 were obtained on April 12 (Table
4). The models for NA, P, and CEC were the
most predictive, with R? values of 0.350, 0415,
and 0.4]6. respectively. Compared to EC, models,
models for grid-sampled soil fertility properties
included fewer wavelengths and the reduction in
wavelength number from the full 10 conservative
model was less (Table 4). This may have been due
to the much smaller number of observations
available for the soil fertility data (n = 365) as
compared to the EC, data (n > 8900).

The five PCs derived from 120 hyperspectral
bands were correlated with soil chemical property
data (Table 5). PCl of the HS image explained
over 80% of the variance in the HS data. The
highest correlations were found between PC1 and
Mg, K, and CEC, and between PC2 and pH. NA,
and OM. PC-based mulliple regression was less
predictive of soil fertility data than was SMLR
based on the original wavelength data.

B. Yield Data and Hyperspectral Signa-
tures

Hyperspectral image signatures in  the 120
individual narrow bands, landsat-like bands (LBs),
IKONOS bands (IBs) were correlated with combine
vield data for Field | and Gvillo in 1999 and
2000 (Fig. 5). Com was sceded on May 24 and

harvested on November 5 and 6 in 1999 at Field

drgl A1z 20024 2 8

. Hyperspectral image signatures taken on July- 7,
1999 were poorly correlated to vield data. At this
stage, 43 days after seeding (DAS), the crop was
at about VII and some soil was still visible
through the corn canopy. About one month after
flowering, the August 27 date, the hyperspectral
signatures were correlated with vield data, nega-
tively in the visible and positively in the near
infrared region. This response is expected since
wavelengths in the visible region are closely related
to light absorption by plant pigments such as
chlorophylls. On the other hand, plants do not
absorb ncar-infrared light and thus reflect more in
the near infrared region. Correlation coefficients (r)
of LBs for yield were almost the same as those
for the corresponding HS wavelengths for each
image date except for July 25, 2000. In 2000, com
and harvested on
September 18 and 19 at Gvillo. On June 25 the

was seeded on April 1]

com crop was in the early reproductive stage (74
DAS), and still green enough to show a typical

correlogram between yield and the spectral signa-

-ture. As comn plants matured, the spectral signature

was not correlated with the final yield in the near
infrared region on July 23, but a high correlation
was still found in the visible region. LB carre-
lations were higher than HS correlations in the
visible region. On September 11, one week before
harvest, the cormm canopy had senescenced. The
correlogram did not show any distinct trends excepl
in near infrared region, where vield data and the
spectral signature were inversely related. In both
vears, the best relationshjps between final vield
data and spectral signarures were found in the early
On August 4, 2000 JKONOS).
the com crop (Gvillo) was in the early repro-
ductive stage (85 DAS), and stil green enough to

reproductive stage.

show the highest correlation berween yield and
spectral signature. There was no imagery available
during the ate vegetative stage, but signatures il
that stage would also be expected to show high
correlations to vield. Similarly, Hong et al.(1997!
reported reflectance of red wavelength was highls
related with final yield in booting stage and band
ratio (NTR/GREEN) in heading stage for rice

(L2 -
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Table 4. Stepwise multiple regression model for estimating soif fertility from image data

Imase F ”“}\:tzp:"‘se - Conservative Model*
Variable| f ode - e :
ate | g |No.of} p.  No.o s (um)
AS . AS
0.474, 0.510, 0.531, 0.546, 0.567, 0.618, 0.672, 0.687
T Y *Hk h s s
" Apr.12)0.337 18 10.320%7% 145919 0.723, 0.726, 0.753, 0.777, 0.828
5 _-
0.471, 0.507, 0.540, 0,549, 0.555, 0.603, 0.684, 0.690
* ok k ok % s )
Apr.26)0.358 20 10.340 1610708, 0.711, 0.714, 0.726, 0.747, 0.753. 0.789, 0.795
0.474, 0.498, 0.522, 0.525, 0.537, 0.567, 0.618, 0.687
~ T T *F ok s s
A Apr.12)0.350 17 10-332 Y 10717, 0.726, 0.741, 0.753, 0.777, 0.825
'* 0471, 0.474, 0.507, 0.540, 0.549, 0.555, 0.600, 0.684
* % 01 ¥*%¥%| AR G B T
Apr.26| 0412 28 e 1610708, 0.726, 0.753, 0.762, 0.783, 0.789, 0795, 0.807
0.480, 0.507, 0.531, 0.537, 0.543, 0.576, 0.627, 0.666,
Apr.12(0.287#%%| 24 [0272%**| 22 |0.67S, 0.678, 0.714, 0.720, 0.726, 0.735, 0.741, 0.744,
o 0.747, 0.759, 0.768, 0.792, 0.801, 0.822
0.474, 0.531, 0.546, 0.549, 0.594, 0.645, 0.657, 0.666,
Apr.260.320%%%| 21 [0304%*x| 17 0.687, 0.717, 0.729, 0.744, 0.762, 0.783, 0.810, 0.816,
; 0.828
| 0.486, 0.492, 0.495, 0.516, 0.531, 0.537, 0.627, 0.645
i . ! *** *** 3 Al 3 1 1 5 b] 2]
fa LAORISPRLE 21 10,394 16 10,654, 0.663. 0.708, 0.726, 0.735, 0.774, 0.798, 0.822
P 0.471, 0.483, 0.492, 0.534, 0.543, 0.555, 0.561, 0.576,
Apr26]0.420%%*| 27 10.399%*%| 21 |0.615, 0.621, 0.627, 0.645, 0.648, 0.654, 0.681, 0.696,
0.702, 0.714, 0.741, 0.762, 0.798
| 0.477, 0.504, 0.531, 0.534, 0.543, 0.552, 0.567, 0.570,
Apr.12]0270%+%| 23 0256***| 21 |0.612, 0.642, 0.666, 0.699, 0.702, 0.711, 0.714, 0.723,
Ca i 0.747, 0.759, 0.765, 0.774, 0.789
Apr.26 -
0.474. 0.486. 0.495, 0.525, 0.543, 0.564, 0.621, 0.741,
* % % * AOF M * ® 3 ’
Apr.12]0.334 18 10317 12 10,753, 0.783, 0.798, 0.301
Mg 0.471, 0.483, 0.507, 0.343, 0.561, 0.603, 0.612, 0.615,
Apr26/0.415%%% | 26 10.394%**| 20 |0.624, 0.639, 0.675, 0.678, 0.696, 0.705, 0.744, 0.753,
0.783, 0.789, 0.801, 0.825
| 0.474. 0,504, 0.516, 0.537, 0.627, 0.654, 0.657, 0.660,
Apr.12]0.279%*+| 22 [0265%**| 19 [0.708, 0.723, 0.726, 0.735, 0.753, 0.762, 0.774, 0.783,
K 0.804, 0.819, 0.822
0.501, 0.558, 0.594, 0.645, 0.681, 0.696, 0.714, 0.717,
*oHoK IQOH ¥ * ’ " > > > ¥ ?
Apr.26/0.304 13 [0.289 0 {6 0724
| 0.474. 0.477, 0.486, 0.495, 0.516, 0.531, 0.537, 0.543,
! 0.570. 0594, 0.603, 0.618, 0.630, 0.654, 0.699, 0.702,
ol * ok x Sk E ok i ’ ’
ApBIZaler®=] 33 1095 28 10711, 0714, 0717, 0.726, 0.738, 0.741, 0.753, 0.783,
CEC | 0.792, 0.798, 0.822 '
0.474. 0.483, 0.507, 0.573, 0.603, 0.612. 0.615, 0.624,
Apr26/0.382%%% | 23 0.363***| 19 |0.645, 0.651, 0.666, 0.678, 0.726, 0.729, 0.744, 0.753,
; i | 0.783, 0.789, 0.816
* Minimum model which vielded R' = 95% of full model R%.
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Fig. 5. Correlations of 120 wavelengths, Landsat-like bands(LBs), and JKONOS Bands(IBs) to

vield data.

canopy.
For soybeans, vield data were ¢enerally most
highly cormrelated with wavelengths in the near
infrared region (Fig. 3). About 100 DAS soybean
plants reflected the most incident near infrared
energy in both vears. There were no distinct
relationships  berween vield data and spectral

signatures in the visible region for any of the
images except for the image taken on August 27,
1999. Soybean plants usually flower about SO0 DAS
depending weather and
conditions. I{mage acquisition dates for this study
were 57 and 107 DAS in 1999 and 65, 99, and
110 DAS in 2000. Although spectral signatures of

corn plants were obvious in the visible and near

on crop management

infrared region at different growth stages. signatures
of
flowering. We believe these signature differences to
be caused by differences in growth habit between
the two crops, especially durtng the reproductive

soybean did not change appreciably after

stage. Soybean is indeterminant and com s

determinant in flowering behavior. It wsually takes

5~7 days for flowenng in corn and thus affects the

spectral signatures of corn within a short time. On
“the other hand, sovbean flowcrs over five o six
weeks. Soybean flowers are behind broad-leaves,
which remain green for a long time, and spectral
signatures are not influenced a lot by flowering.
Ten narrow bands for each wavelength range
NIR(0.76~0.79),  RED(0.64~0.67), GREEN(0.52~
0.55), and BLUE(0.47-0.50) - were selected based
on the correlogram (Fig. 5). The correlations with
vield of each of the 300 RVI and NDVI indices

obtained for each image date were expressed as a

scatterplot (Fig.  6). For corn, RVI and NDVI
correlations  were very similar in  both years.
Correlations  befween yield data and RVI and
NDVI of August 27, 1999 were the highest

obtained. In 2000, high comrelations were found
when using the RVI and NDVI data of June 23

Vegetation indicies did not improve correlation
coefficients with yield, compared to raw HS data
and none of the individual band combinations

provided significantly better correlations than any

other combinations within each spectral region.

implying that there was no advantage in this case

- 9) —
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Table 5. Relationships between soil fertility and image-derived principal components

PCI P2
Date | Apr.12 Apr.26 Apr.12 Apr.26
VAR'|  84.48 84.11 1,40 1.92
R’ of MR for all PCs
o P g A E e e,

pH 0.005%*%  (.156*** 0.023 0.096 0.289%** -0.3834**
NA 0.123%%% 0197 % -0.056 ~0.140%* ~0.338%** 0.412%%*
oM O.L14%**  0.148%**  —0.067 ~0.122* ~0.333%+ 0.355%**
P 0.022 0.018 ~0.125% 0.122¢ ~0.064 0016

Ca 0.017 0.019 -0.095 -0.077 0.016 -0.081
Mg 0.144%%*  0202%*%  —0267%** ~0.35) %%+ -0.283%** 0.32]%#*
K 0.105%F%  0.126%*%  0213%*%  (230%%x ~0.256%** 0.266%**
CEC O.117%**  0.1S0***  -0.]81%** ~0.249% ~0.303%** 0.319%**

PC3 PC4 PCS
‘Apr.l2 Apr.26 Apr.12 Apr.26 Apr.i2 Apr.26
- 0.75 0.90 0.60 0.78 0.48 0.49
e [ S

pH 0.081 ~0.010 ~0.047 0.077 -0.030 -0.066

NA 0061 002 0030 ~0.132% 0.029 0074

OM ~0.056 0.060 -0.043 ~0.108* -0.077 0.089

p -0.036 0.044 -0.047 -0.014 ~0.054 0.001

ca 0007 0.014 -0.070 0.063 0.038 0.007

Mg ~0.055 0.051 -0.079 ~0.01) -0.023 0.014

K ~0.002 0.016 ~0.044 ~0.010 0.003 0.064

CEC 0,051 0.038 ~0.049 -0.054 ~0.012 0.06)

* = 0.05>p>0.01, ** =0.01>p>0.001, *** =p<0.001, a % variance explained by each PC.

tor hyperspectral data as compared to multispeciral
1mages.

with RVI and NDVI
were essentially the same. High cormelations bet-
ween yield data and RVI and NDVI were obtzined
with the Avuvgust 27, 1999, when was 107 DAS.
There
coefficient for the different narrow band combina-

In soybean, correlations

was no apparent difference in correlation
tions in sovbean as well as in corn. Vegetation
indices itself did not improve correlation coeffi-

cients with vyield. The best time 10 show high

correlation between yield and vegetation indices

coincided with the time for spectral signatures.
Multiple regression analysis using temporal data is
needed for improved explanation of yield data.
Relationships between yield and the first 5 PCs
of image data, along with the R’ of multiple
regression models for estimating crop yield using
all five PCs are shown in Table 6. All five PCs
derived from 120 HS bands were correlated with
yield data both for com and soybean. The best

model explaining yield using 5 PCs was obtained
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Fig. 6. Correlations of ratio vegetation index (RVI) and normalized difference vegetation index
(NDVI) from 120 wavelengths, Landsat-like bands(LBs), and IKONOS bands(IBs) with vield

data.

[a] [b]
a) Grid vield map obtained by vield
b) IKONOS band 4 (Sep. 6, 2000) by yield
sensing svstem

Fig. 7. Yield map from yield monitoring and
IKONOS image far soybean in Field 1.

with the imagery of August 27, 1999 in com and
sovbean. In these models, more than 75% and 90%
of the wvanability in final yield for com and
sovbean, respectively, were explained by S PCs.
As the cropping season progressed more PCs were
required 1o explain the variance in the HS data.

A within-field vield variability map made was
shown and compared with gnd yield map in Fig. 7
and 8. Image of IKONOS band 4 was highly
related o the Field 1 soybean yield map from
combine vield sensing (Fig. 7). Within-field yield
variability’ map from TKONOS-derived NDVI image
taken on August 4, 2000 and wmultiple linear
regressed image with 4 LBs of HS data showed a
high spatial relationship with com yield and
soybean vield, respectively, in the Gvillo field (Fig.
8).
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Table 6. Relationships between crop yield and image-derived priacipal components

: —
[ a R 01’ MR T
Crop | Field | Year RS model
Date for all PCs PCl PC2
I'Jul. 7 0.189%** -0.138%** 64.65 —0.109*** 26.90
Field 1| 1999 -
| Aug. 27 0.445*** —0.28 [ *** 49.99 -0.1]10%** 20.44
Com Jun. 25 0.274*¥* -0.379%** 49.01 0.175%** 21.58
Gvillo | 2000 | Jul. 25 0.395%%*x —0.377%** 35.58 0.407*** 18.26
Sep. 11 0.162%** —0.157%** | 57.07 ~0.314%** 15.82
1 r
Crop | Field | Year mage
Date PC3 PC4 PCS
: Jul. 7 —-0.180*** 0.85 -0.320%*** 0.73 0.08) 0.31
Field 1| 1999 —~
Aug. 27 | 0.194%** 5.08 -0.051%%* 1.09 —0.]170*%* 1.01
Com | Jun. 25 | 0.130%** | 251 | -0311%%*| 187 | -0.434%**| 090
Gvillo | 2000 | Jul. 25 | -0.458%%* 2.23 ~0.023* 1.80 | O.111%%* 1.08
Sep. 11 | -0.168%** 2.28 0.167*** 0.60 -0.193*** 0.53
] Image R2 of MR T
Crop | Field | Year model
Date for all PCs PCl1 PC2
Jul. 7 0.126*%* -0.270%=* 79.41 0.082%** 13.04
Gvillo | 1999 —
. Aug. 27| 0.673%*+* —-0.547*%% 62.15 0.50] **+ 2491
Soybean Jun. 25 0.142%%* 0.182%** 56.93 ~(0.221%%% 32.17
Field 1| 2000 | Jul. 25 0.292%¥* 0.430%** 47.10 0.163%** 2436
Sep. 11 0.195%** 0.304* % 54.73 ' 0.254*** | 28.05
I r
Crop | Field Year mage
Date PC3 PC4 PCS5
Jul. 7 -0.046%** 0.72 0.027% | 046 0.207%** 0.42
Gvillo | 1999
Aug. 27 | 0.031*** 1.72 —0.144%** 0.70 0.019 0.56
Soybean Jun. 25 -0.016% 145 -0.187*** 0.88 0.058*** 0.48
Field 1| 2000 | Jul. 25 | 0.136%** 1.94 —0.153*** 1.05 0.014 0.83
"Sep. 11 |-0.090%** 2.36 0.105%** 0.95 0.027%** 0.80

* = 0.05>p>0.01, ** =0.01>p>0.001, *** =p<0.00l, a % variance explained by each PC.

6. CONCLUSIONS

Several statistical methods - correlation analysis,
SMLR, and PCA were successfullv used to relate
within-ficld information on soils and crops with
hyperspectral imagery, Landsat-like bands, [KONOS
imagery. Hyperspectral image signatures of bare
soil taken on April, 2000 were highly correlated

with soil EC, and chemical properties. Blue wave-

lengths in the visible region, Landsat-like band t,
and the 1¢
soil EC,. Soil chemical properties were related to

PC of HS daia were informative for

blue, green, and red wavelengths in the wisible
region rather than wavelengths in the near infrared
which

signatures form soil surface were usually deter-

region, implied that spectral reflectance

mined by soil colors. Thus, the factor influencing

soil colors also had an important role to represent
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[2]

and grid yield map (botiom)

[b]

a) NDVI_IKONOS image of Aug. 4. 2000 (top) and grid yield map obtained by vield sensing system
(bottom) map (bottom)

b) Multiple linear regression model of 4 LBs for yield estimation from HS image of Aug. 27. 1999 (top)

Fig. 8. Yield maps from vield monitoring and airborne and satellite images for Gvillo in 1999 and

2000.

the speciral reflectance signatures. Soil moismure
undoubiedly plaved an important role. Within-ficld
ECa variabilitv map was derived from LBI, 1" PC,
and a speciral index (NLB3l) of the imagery taken
on April 12, 2000.

Hyperspectral image signatures in the 120 indi-
vidual narrow bands, Landsat-like bands, principal
(RVI  and

images, and

components, and vegetation indices
NDVI) derived from hyperspeciral
JKONOS

significantly correlated with final yield of com and

image  signatures were highly and
soybean if acquired at the proper growth stage.
Highest correlations to com yield were generally
region,

correlations to soybean grain yield were generally

found in the visible while  highest
found in the near infrared region. Highest corre-
lations between vyield data and RVI and NDVI]
were obtained with the August 27, 1999 data for
both comn and soybean. Correlations with RVI and
NDVI  were Within-field

soybean yield map was made using IKONOS band

essentially the same.
4 from the imagery of September 6 in Ficld 1.
Within-field yield variability map from [KONOS-
derived NDVI image taken on August 4, 2000 and
multiple linear regressed image with 4 LBs of HS
data were made for explaining corn vyield and
Gvillo  field.

soybean yield, respectively, in the

From PCA,
explained by the first PC when relating to soil
ECa and fertility data. For vield daia, as the
cropping season progressed more PCs were required

the majority of total variance was

to explain the variance in the HS data.

Additionally from this investigation we recom-
mend that the geometric distortion of an airborne
pushbroom sensor due to vehicle attitude change
should be corrected al the system level. Also, we
acknowledge that studying optimal pixel size to
know the ratio of signal to random wvariability or

noise ought to consider spatial statistical analysis.
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